
Flight Data Logger

Winston James, Brian Lichtman, and

 Shaun Mosley, John (Tony) Torres

Department of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — This paper describes a senior design project

which investigates a means to verify the accuracy of the
United States Air Force Stability and Control Digital
DATCOM software for L-3 Communications. L-3

Communications has expressed the ability to predict the
performance of an aircraft, using the DATCOM software
set, based on data about the geometry of an aircraft, called

the geometry sample. From this sample, L-3
Communications is able to create a simulation model of
that particular aircraft for tasks such as the creating of

combat training scenarios and the training of pilots for
flight. Currently, the software has only formally been tested
on large aircrafts. However, L-3 Communications would

like to know the viability of the DATCOM software set on
small UAVs. Therefore, in this paper, we describe our
design of a method to assess the validity of the DATCOM

software set.
Index Terms — Autonomous drones, flight coefficients,

remote control airplane, autopilot

I. INTRODUCTION

L-3 Communications is a defense contractor which designs
and supplies simulation and training equipment to many of the
United States’ military divisions. Currently, L-3
Communications uses DATCOM to retrieve an aircraft’s
coefficients of flight based on its geometry. They then use
these outputs to simulate test flights in software such as
FlightGear Flight Simulator. However, L-3 Communications as
well as many other leading defense contractors face a common
conundrum, how do they know their simulator is providing
feedback equivalent to that of the actual aircraft in flight. L-3
Communications has informed us that the currently accepted
method is to hire a trained pilot to fly the simulator to
determine if it is performing as expected. This method tends to
inefficient and not cost effective. While many times the
software does prove accurate, it has never thoroughly been
tested on small aircrafts, specifically, Unmanned Aerial
Vehicles (UAVs). Therefore, we devised a method to obtain
real-time flight data about the performance of a UAV in flight.
Using this information, we compared the results of the flight
performance data with the predicted performance data based on
their geometry technique.

The motivation for this project starts with the sponsor, who
wishes to produce a viable, and accurate, innovative means of
predicting the performance of an aircraft in flight without
putting the aircraft in flight. This would eliminate the use of
resources such as flight time, plane fuel, and providing a low-
risk testing environment that ensures the safety of the plane,
the public and the pilot.

The secondary motivation for this project comes in the form
of technical expertise from the research and design team
comprised of 3 computer engineering students (Brian, Tony,

and Shaun) and an electrical engineering student (Winston).
Winston will specialize in the hardware portion of this project,
Brian will pursue the interfacing of the hardware and software
components, Tony will develop the applications that will
program the hardware, and Shaun will dedicate himself to the
programming integrated circuits on the hardware

Our goal is to produce a low-cost, portable, lightweight, &
accurate product that is general enough to be capable of being
installed in various aircrafts (military, commercial, even R/C
models). Our product will be responsible to measure various
parameters that determine the flight characteristics of that
aircraft such as thrust, lift, and accelerations about various axes.
The in-flight parameters, in addition to the geometry
parameters crucial to this project are listed later in a large table.

Our objective is therefore to populate a printed circuit board
(PCB) with sensors, digital signal processing (DSP) and micro-
controlling capabilities, GPS, and provide software application
that will program that PCB to be able to provide mixed flight
(manual and automatic) control, relayed flight data (altitude,
pressure, force, various accelerations, etc.), flight data logger
must be versatile, collect as much live data as is possible. This
leads to better comparisons later sponsored aircraft must be
small unmanned aerial vehicle (UAV) but big as is feasible
under budget, extract from the excel spreadsheets L-3
Communications provided, the physical parameters that the
hardware must measure in real-time, and equivalently software
must be prepared to process.

The manual flight will be possible via the R/C transmitter
given the plane is in the range of it. Automatic flight will
require a flight profile of the path that will be followed via GPS.
Piccolo, the R/C autopilot L-3 Communications proposed, is
too expensive and not used. The autopilot chosen was the
Ardupilot because it is free open source software. For the flight
data a ground receiver on a laptop or other viewing display
with recording capabilities will be incorporated and an on-
board memory (in the case that the plane is out of range of the
ground station)

L-3 Communications has decided to sponsor our Senior
Design group in order to complete this task. L-3
Communications funded our group in order for us to obtain the
resources necessary in order obtain the flight characteristics
needed in order to perform the comparison. In the following
sections, we will describe our project. Section II describes the
project’s requirements. Section III entails the coefficients to be
calculated and the methods to calculate them. Section IV
describes the hardware used by our project, the microcontroller
software design and implementation, and the PBC integration.
Section V describes the software system used for the
aerodynamic coefficient calculations. Section VI discusses
other external components used by our system. Lastly, Section
VII concludes our project.

II. PROJECT REQUIREMENTS

Our sponsor decided that the requirements and specifications
were best left to our choosing. After brainstorming idea after
idea, we created a set of strict requirements to test our design.
The list of requirements as follows:

 Ability to record data at speeds of up to 30 Hz

 PCB board dimensions should be no bigger than 6” x

5” x 1”

 Aircraft should be able to fly for at least 20 minutes

while recording data

(2)

 Test vehicle must have a wingspan larger than 3 feet

 Must not have more than ½lb weight offset to one

side

 Cost must be under $1500.00

 Must be complete and fully functional by December

15, 2011

As described before, we were tasked to design a versatile

system which would measure live flight data of a small
unmanned aircraft. We were asked to collect as much in flight
data as possible would be compared to the outputs of the
simulation software used by our sponsor, L-3 Communications.
As such, L-3 provided us with several excel spreadsheets
which provide the inputs as well as the outputs of their
software collection. From this we have formulated the list of
data we will attempt to collect. Nonetheless, the list of values
obtained from these spreadsheets is too large to list in this
document; therefore they are just listed in our final paper.

As for how high the plane must fly, how long, and how far,
L-3 Communications has not decided on these specifications
because they want to do a cost analysis of the types of airplanes
and sensors that are available as these materials can range
vastly in price. L-3 Communications said that after we collect a
list of prices and specifications of different models of aircraft
and sensors they will make a decision as to how much they are
willing to spend.

III. COEFFICIENT CALCULATIONS

In our project we had to measure 9 coefficients: lift, drag,
side force, pitch, roll, yaw, angle of attack (AoA), angle of
sideslip (AoS), and dynamic pressure (q). The lift force is
calculated by finding the total force on both the top and bottom
of the plane. It is then divided by the area that the force sensors
take up and multiplied by the total area of the top and bottom
of the plane, respectively. These two forces are then subtracted,
bottom minus top, and the total lift force is found as seen in (1).

∑

∑

 (1)

The plane experiences forces from air flow on it. The
difference in pressures over the wing cause the lift force. The
wind alone on the plane causes the sideslip force. Finally the
drag force is caused by the plane pushing through the air. The
force coefficients are the basic three dimensional forces on the
plane. Figure 2 below shows the various forces acting in the
different dimensions.

The side force and drag force is found in a similar way just
using the sensors on the side of the plan. These forces are
calculated after adjusting for the angle of the sensors on the
plane and the angle of attack. As noted in Figure 3, the angle
of attack is the direction of the wind relative to the horizontal
of the plane.

The pitch, roll, and yaw are all found using a gyroscope. The
moments of these, however, are found again with the force
sensors. Again the air flow causes forces on the plane and these
forces cause moments. The roll is the moment around the x
axis, the pitch is the moment around the y axis, and lastly the
yaw moment is the moment is around the z axis. Figure 1
below further illustrates this notion.

The moment coefficients are the basic three dimensional

moments on the plane. Knowing ahead of time how far each

sensor is from the center of gravity it was just simple matter of
using moment equations to find the moments on the plane. The
equation is given below. Again the Forces are calculated after
the physical angle and planes actual angle are taken into
account.

 ∑

AoA and AoS are both measured with angles sensors
mounted on the boom of our plane. There are no calculations
needed after the value comes in.

Dynamic pressure is found by finding the difference in
pressure from the front of the boom and the side. Again this
value comes in as the number needed and no calculations are
needed.

Figure 3 – Typical Airfoil at an Angle of Attack

(Reproduced with permission from NASA Glenn)

Figure 1 - Moments About the Plane

(Reproduced with permission from NASA Glenn)

Figure 2 - Forces on the Plane

IV. Hardware

A. Sensory Selection

The hardware is a data-logger, so the PCB is outfitted with

various sensors to measure variables that pertain to DATCOM,
these are primarily forces and torques coefficients. A
coefficient is dependent on a quantity called dynamic pressure
which is dependent on true airspeed and air density. Therefore
the goal is to measure forces and torques with respect
ultimately to true airspeed since for our conditions; air density
shouldn’t change very much. Space constraints (RC plane
fuselage) called for as many measurements as possible in as
small amount of space possible, and thus we desired
multitasking parts wherever possible. For this reason we chose
a 3D accelerometer (AIS326DQTR) for drag and lift, and
gyroscope (L3G4200DTR) for angular velocity, as oppose to
two or three 1D accelerometers and gyroscopes. The
accelerometer also is low powered at a mere 2.2mW.Since we
needed to judge air density, and that depends more or less on
humidity, temperature and altitude, we have a Analog Devices
temperature (AD7814ARMZ),a Honeywell humidity (HIH-
5031-001) sensor, and Bosch barometric pressure sensor
(BMP085). In order to measure true airspeed, we employed the
pitot-tube technique by using a Freescale differential pressure
sensor (MPXV7002DP) with tubes that will be mounted on a
boom; one tube facing into the wind for total pressure, and the
other on the side of the boom for static pressure from the air
flowing perpendicular to its opening. On this boom will be a
pair of angle sensors (SV01A103AEA01B00) with wind vanes
attached to sense the Angle of Attack and Angle of Sideslip of
the aircraft, which are require parameters in DATCOM. The
pair of angle sensors is basically potentiometers except that
they are tinier to not impede air flow past the boom. Thin
membrane force sensors were chosen as the method to record a
discrete force distribution on the surface of the aircraft without
modifying the airflow over the flight surface. The justification
of these sensors is as follows. The force sensors (FSR Design
Kit) had to be thin for their functional transparency in wind-
flow, and they were the cheapest solution, at $100, for our
budget as opposed to $5000 systems i that measured a
continuous force distribution, and also they were lightweight as
opposed to bulkier discrete force sensors, and could measure
the forces likely experienced on a flight surface. The
accelerometer and gyroscope met space requirements with their
3D axis measurement capability, and they were each sensitive
enough for our application with the accelerometer sensing a
change as small as 9mm/s2 /Lsb per axis and gyroscope sensing
down to 9mps/Lsb per axis . Influencing our decision was also
cost, and thus free parts were very desirable in order to stay
under our budget if we needed parts for breaking, testing, and
final assembly. Thus we also chose the gyroscope because free
samples were available and it was one of the newest ICs from
ST Microelectronics. The gyroscope also had the capability to
give a temperature reading, thus providing a level of
redundancy in estimating ultimately air density, or if we chose
to discard our temperature sensor to save more space and MCU
pinout. Lastly the gyroscope was a low power device
consuming at max about 19mW, which was affordable relative
to our power budget of 8.3W. Less power draw meant more
flight time for us. Our 10-bit temperature sensor was also
sampled (free), it was more accurate and resolute than the 8-bit
gyroscope temperature measurement. It also supported SPI,
and eliminated the potential problem of a reading being

affected by the heat generated from the gyro if it was heating
up measuring angles. The differential pressure sensor was
among the cheapest found, it was low-powered (50mW), and
available for sampling. Being an analog part, it helped eased
the load of the digital traffic into the MCU, and was sensitive
to 1mV/Pa. It was chosen strongly based on the fact that it is
sold commercially in a pitot-tube setup from DIYDrones.comii
to measure true airspeed (TAS) which is exactly what we aim
to measure. Even more, it was sold for RC drones, one of
which we bought! In order to track altitude we’re using popular
altitude sensor found both on our autopilot hardware, and also
as a standalone unit on Sparkfun.com iii . The barometric
pressure was chosen for its low power (30uW), despite its
moderate accuracy of ±8ft in judging atmospheric pressure. We
can tolerate a moderate accuracy since the humidity and
temperature sensor are already zeroing in on air density, and
the barometric pressure sensor is simply helping this
measurement, so there is already some redundancy involved.
The humidity sensor is also low-powered at 600uW, which is
desirable because the instrument is surviving off a Li-Po RC
battery which can go empty fairly quickly in flight. We desired
to use the ADC of the MCU to have a more balance use of
analog and digital MCU features. They are analog for ADC
utilization and are low-powered at 5mW.Our communication
preference was SPI over I2C, which both the sensors supported.
One of the main reasons is that SPI is generally faster than I2C
though; I2C can simplify a design like ours that has one master
device (MCU) and many slaves (sensors); by putting all the
slaves on one main bus. We chose higher speeds in order to
approximate a continuous stream of data from every sensor in
as short amount of time as possible. We do though have a
asymmetric mix of SPI and I2C devices; the I2C barometric
sensor, and the SPI gyro and accelerometer, temperature sensor,
and micro SD card.

B. Sensory Data Acquisition

With all of the flight data that we are obtaining, we utilize an
array of sensors to obtain various data to solve for variables
that we need. Since there are over thirty-five sensors installed
into the Flight Data Logger, each sensor will be discussed in
brief detail. The list of sensory is as follows: force sensor,
angle sensor, differential pressure sensor, barometric pressure
sensor, humidity sensor, temperature sensor, gyroscope, and
accelerometer.

The force sensor is a very critical sensor in the entire design
because it is used to calculate more than just wind force.
Before any actual flight tests, preliminary tests had to be done
to determine the plane’s moment of inertia and the force
sensors helped ease this process. Having 32 force sensors
spread all over the airplane’s surface allows for us to get
somewhat accurate measurements to determine average force
on the surface of several areas over the vehicle. The outputs
from the sensors are analog voltages and are converted into 12
bit resolution by the MCU’s analog to digital converter.

Another analog sensor is the angle sensor and its use
requires additional hardware. The angle sensor is connected to
a wind vane which will move from the force of the wind.
Figure 4 illustrates what the instrumentation resembles.

(3)

(4)

Figure 4 - Angle of Attack Probe

(Reproduced with permission from DIYDrones)

As the wind vanes rotate, the angle sensors will help us
determine the direction of the wind flow relative to the
horizontal and vertical axes of the vehicle. These values will
then be used to calculate the angle of attack and angle of
sideslip.

Airspeed is also a variable involved in calculating the angle
of attack and sideslip. In order to obtain that data, we use a
differential pressure sensor which will compare the pressure
from the front of the plane to that of the pressure on the side.
With the value this derives, we are able to calculate airspeed
and then derive angles of attack and sideslip. This too is an
analog sensor.

In addition to the differential pressure sensor, we installed
the barometric pressure sensor. Although they both grab data
concerning its surrounding pressure, they both serve very
different purposes. As explained earlier, the differential
pressure sensor is used to determine airspeed, while the
barometric sensor is used to calculate the estimated altitude.
This device communicates with the MCU via the digital inter-
integrated circuit protocol.

The next sensor is another analog device – the humidity
sensor. This IC is used to simply obtain the surrounding
humidity. Once this information is recorded it is used in our
computer based software to calculate other flight data.

 Next is our temperature sensor. This sensor communicates
via 4-wire SPI to the microcontroller and has a resolution of
the temperature to 0.25˚ C. Again, the values obtained from
this sensor are plugged into several other equations to validate
other findings.

Lastly are the gyroscope and accelerometer. Both are
presented simultaneously because even though they are two
individual parts, they work together to calculate the plane’s
movement. The gyroscope is used to measure the rotary
movements of the plane in any of the three dimensions –
particularly referred to in aero terms as yaw, pitch, and roll.
Since some data from the gyroscope can be a little bit shaky,
the accelerometer is used to validate that the plane actually was
in motion in the specified axis.

Each sensor operates independently of one another. Hence
any failure of one sensor will not affect the operation of any
other in the system. All integrated circuits produce various
data types with a broad range of outputs – for example, the
force sensors put out an analog signal representative of the
force on the device, while the temperature sensor produces
digital, results with a user specified resolution.

As required, our system is set to run at a rate of 60 Hz; so
every second the MCU will have communicated with each
sensor at least 60 times. Since all of the sensors run
independently, there is no concern of sensor failure slowing

down system run time. After data has been extrapolated, it
must be converted into some understandable value.

Although each sensor may produce various outputs, all data
is converted, with its respective units, into an IEEE 754 single
precision floating point value. After the data has been polled
and the calculations have been complete, the float is then
transferred over to the microSD card for storage. Then the
microcontroller goes onto the next sensor to repeat the process.

C. Microcontroller Storage System Software Design

As has been discussed, this system will be recorded various
flight characteristics at a very rapid rate. Therefore, the system
we implemented must be able to handle a continuous influx of
data as well as have a method to store it. The microcontroller
we used, the dsPIC33EP512MU810, has the ability to read
large amounts of data from both analog and digital I/O devices
at relatively fast rates. The microcontroller has 52 KBs of
RAM which can be used to hold values temporarily.
Nonetheless, 52 KBs is not a lot of space. It is highly likely we
would have run out of memory well before we stop taking
samples from our sensors if we only used the built in RAM.
Therefore, we decided to use an external memory device to
store our data. When choosing a device, we first calculated an
approximation of how much memory we approximated to be
needed to store all of the data we intend to collect over a set
period of time.

In order to come up with an approximation of how much
memory was to be required to store all the data, we made the
assumptions that our flight time would run about 20 minutes.
Therefore, for safety purposes, we doubled this value. This
ensured that we had more than ample space for storing our data.
We also made the assumption that our test will run for 40
minutes. The first value we calculated was approximately how
many measurements would be taken over the course of the
flight. We assumed we would perform n measurements cycles
a second. Using this, we then approximated the number of
measurements that will need to be taken in terms of n.

 ()

Since we already had chosen a value of 40 minutes as the
length of time we would be taking measurements for, we were
able to plug this value in and remove some of the variables in
the equation.

Now we had a good idea as to how many measurement
cycles we would need to perform. Using this value of 2400n,
we can saw a linear increase in memory usage occurred as we
increase the amount of times we poll data from the sensors on
the aircraft. Therefore, choosing a value for n was left until
after we determined how much memory each measurement will
require.

(5)

(6)

(7)

Next, we chose to follow the IEEE 754 single precision
floating point standard to store our data obtained by our
microcontroller. According to Goldberg, the IEEE 754 single
precision floating standard requires the use of a 32 bit word of
data to store one value. [1] Using this knowledge, we
calculated how many bytes of data would be required to store
each measurement.

As described earlier, we used 36 sensors. From this we
deduced that 36 floating point values were to be stored each
measurement cycle performed by the microcontroller. Using
this information we calculated it would take 152 bytes of
memory for each measurement cycle. Using the values
obtained thus far, we calculated the anticipated memory usage
of the system per measurement cycle.

Based on the values we had obtained thus far, we form a
linear relationship between the number or measurement cycles
we perform per second and the amount bytes which would be
required to store the values of the measurements taken over a
period of 40 minutes. This relationship can be seen below.

Using this relationship, we chose a frequency at which we
would want to obtain data from our sensors. According to the
specification of the dsPIC33EP512MU810, 1.1 million samples
can be taken per second from the ADC I/O. However, although
this may be true, not all of our I/O devices were capable of
providing data at such a rate. Using our slowest part, the three
axis digital gyroscope, as a ceiling, the maximum read rate we
could obtain was 800 samples per second. However, this many
samples per second was overkill as far as our needs were
concerned. In addition, it would cost approximately
291,840,000 bytes of data to store at this rate. This was
approximately 280 megabytes of data. This is quite a lot of
space for just raw data. Therefore, we decided to limit our
frequency of collection well below the maximum that is
allowable by the dsPIC33EP512MU810.

We decided to take samples at a rate of 30 Hz. At this rate,
we had more than ample amounts of data to work with.
Additionally, we decreased our memory usage by about 96%
which brought us down to a memory cost of about 10,944,000

bytes which is approximately 10.5 megabytes. This was a
much more reasonable amount of data to work with.

Although 10.5 MBs doesn’t seem like a lot of data in today’s
computing world, when you consider the fact that the
dsPIC33EP512MU810 has only 52 KBs of RAM, you can see
that the microprocessor would not have been able to handle
more than a few measurement cycles before its RAM becomes
full. Additionally, this number had the increase or decrease
drastically should our sponsor have decide that the design
needed to be changed and therefore sensors needed to be added.
Additionally, we were not even taking into account the amount
of RAM that will need to be used just to run the program which
will poll the data from the sensors before it is even stored.

Using this information, we then decided had to decide on a
means to store the data. L-3 Communication’s only
requirement was that the data be simple to retrieve. There were
a few options as to how to transfer the observed flight data
obtained by the sensors to a computer for later use by our
sponsor. Since it had already been determined that it will be
impossible to store all the data on the processor’s internal
memory, the idea of simply using an onboard USB connection
to read from the microcontrollers memory had to be dismissed.
Memory could have been added in order to utilize USB
functionality; however, we found other options that seemed to
provide more desirable results.

The three options we had to choose from included the use of
a radio frequency tag reader collect data that would be read via
a computer, live transfer of data via radio frequency, or storage
using a using a micro Secure Digital card (microSD card). We
decided against the radio frequency tag because a secondary
medium would still be needed to store the data before it could
be collected. We also decided against live transfer as it was
possible that data loss if there was too much interference in the
area the test was run.

Therefore, we went with our last option, using a micro
Secure Digital card (microSD card). The microSD card was
determined to be the best fit because it is an easily attainable
piece of hardware and available in a variety of data sizes as
well as physical sizes and offers a variety of read/write speed
capabilities. Plus, it is removable and most computers offer an
SD card reader as a standard which can be used with a
microSD to SD card converter. Or in the event that the
computer lacks that hardware, microSD-to-USB adapters are
readily available at a reasonable price. This solution answered
our needs of being able to handle data storage and being able to
get the data to the user.

Connection of the microSD card to the microcontroller was
done using the SPI. A microSD card can be connected using
the pin layout shown in Figure 5.

Figure 5- SPI Pin layout of a microSD card

(Reproduced with permission from Amanda Bogeman)

With the microSD card interfaced to our microcontroller, we
used Microchip Technologies’ File System I/O Library write
our data to it. All data is stored in a binary format on the
microSD card using the IEEE single precision floating point
standard just described. Every time a value is read from a
sensor, it was written to a storage buffer created by the library.
The appropriate function from the library was then called to
flush the buffer to the microSD card. This process was repeated
every sensor in the system until the completion of the test.

D. PCB Design

Our 1st 2-layer PCB revision had power, ground, and signal
traces mixed with no planes, and looked very confusing, so we
simplified our design by designing a 2nd 4-layer revision with 2
planes for power and ground and 2 signal planes, per the advice
of the Sr. PCB engineer of ZTEC instruments. The 2nd revision
was cleaner in design, with a power planes filtered and less
traces. Starting the PCB design without integrating
manufacturing constraints into design rules led to fabrication
holds.

Thus the final design had to be tweaked to fit the
manufacturing capabilities of Advanced Circuits our fabricator.
DFM rule checking constantly rechecked our updated gerber
files until the PCB could be manufactured. We changed
silkscreen text fonts, trace widths, readjusted footprint
soldermask clearances, and fixed spacing violations. The
“show stoppers” to manufacturing were eliminated, and we
proceeded to order our PCB. Electrical impedance checks were
done manually with a multimeter to validate fabrication
accuracy, and the power nets were isolated, so the assembly
process could start. Budget constraints forced a hand-assembly,
but assembly soon revealed a list of other problems. A major
problem was that +3.3V and ground were shorting after the
PCB was almost completely assembled. Initial guesses
suspected a connection was taking place via a part that shorted
its terminals when off, but advice from the Principal Design
Engineer at ZTEC Instruments quickly dismissed the idea.
Visible shorts were found on our accelerometer, whose
solderpaste bubbled after reflow in the senior design lab,
forming shorts on some power nets. After cleaning and
eventual removal, the short lingered. Finally after referencing a
working breadboard circuit, the humidity sensor was the culprit
with a bad footprint; shorting a power pin with a PCB ground
pad. The GND pad was insulated with kapton tape then
covered with copper tape and then the part resoldered.

Other checks showed that the barometric pressure sensor had
a similar problem. It had all power but no ground trace, so one
power trace had to be cut and the ground pin wired to ground.
The SD card connector also didn’t fit perfectly and the
footprint pinout belonged to an SD card, not the desired
microSD pinout. So 30 and 28 AWG wires fixed that sequence
problem, but yet another surfaced. The SPI modules in the
datasheet for SPI ICs didn’t specify explicitly that pull-up
resistors were needed on some lines, and so the PCB was
designed without them. Breadboard experiments showed that
they were necessary for SPI to work, thus 10K resistors were
added to the gyroscope, accelerometer, and SD card’s SPI
interface connections and pulled-up to +3.3V. Also, ignorance
of MOSI and MISO SPI lines caused us to have MISI and
MOSO connections. Fortunately for the gyroscope, mislabeling
the SDI and SDO lines prior to fabrication fixed the MOSO
and MISI problem. Thus two wrongs did make a right for the
gyroscope lines. The accelerometer had the problem of its

MOSI line going to a input line and it’s MISO going to a I/O
line on the MCU. We planned a 4-wire SPI operation, but since
the problem it was decided best to operate the device in 3-wire
mode, allowing the slave’s SDO and SDI lines to short
internally and utilize the SDO line as it now becomes an I/O
pin that’s on a reprogrammable I/O pin on the master MCU.

This solution provided us an alternative to scraping the SDI
and SDO traces that were less than 0.01” thick and less than
0.02” apart, and swapping them. Lastly, because high assembly
costs were not known during the design phase due to our
ignorance of the common manufacturing procedures of buying
reels or other packaging that contains more parts than that
required for a single build, and laser-cut stencils etc., we
replaced small components like 0402 resistors and capacitors,
in favor of larger 1210 and 1206 types in anticipation of hand
soldering all parts to the board, which was the only thing we
could afford. In all the problems we found solutions, and
because of that, experience was had in soldering, making
breakout boards, and being innovative. A 3D representation of
the board is shown in Figure 6 below.

Figure 6 - 3D representation of manufactured PCB Board

(Generated using design software)

Thus we’ve learned to get parts as early on and test them on

custom breakouts on perfboards or bread boards, then transfer

circuits known to work to our PCB, rather than simply trust

datasheets circuits, which can lack details about things readers

are assumed to know; like SPI connections. For this reason of

building before testing, we built a 4x4 sq.in PCB rather than a

rectangular board. Though we fit our PCB into the RC plane,

initially we didn’t have the plane to take measurements to

constrain the PCB dimensions by, and thus made guesses from

scale pictures of the plane, since our sponsor purchased the

plane after we ordered the PCB. We fixed other problems like a

badly designed on-off switch, needing a SPST instead of a

SPDT switch. A toggle switch from RadioShack fixed the

problem. We also built a custom RJ-11 cable for the PC

interface because we had the problem of reversing the RJ-11

pinout on the PCB for ICD3. However the PCB powered on

without smoking and the PC successfully communicated &

programmed the MCU via Microchip’s ICD3.

V. SOFTWARE SYSTEM

The software application takes the data from the sensor array
and outputs a “.csv” file. The software is needed to interpret
the data gathered by the array. With the data that is calculated
by the software the client will has a readable sheet of
information. The sheet can then be used in comparisons. This is

(8)

(9)

(10)

to allow the client to compare the data collected with the data
that comes from there simulator.

The software is independent of the hardware so that there is
more portability of the system. Rather than doing the
calculations on broad and wasting memory and processor time
the data is stored and then transported to a PC via SD card.
With the on board processor free more data collection points
can be made and therefor more accurate results can be
produced. From there the program will use aerospace formulas
to find the values needed for the client to compare.

The software takes the raw data from the file and parses it.
These data points are put into structs. Each data point, which
represents one collection of all the sensors, or one time unit, is
in its own struct. Then the program runs through loops to find
the values needed. Once done there is about as many different
values as there are data points. These values are then averaged
so it produces the results required by the client. Quality of the
produce was tested by making a small sample and calculated
by hand.

Our software is a very simple interface that requires very
little user input. We wanted to keep it as simple as possible
because the application does not require an extensive user
interface and so we could focus more energy into other aspects
of the software. The interface has three buttons and two text
fields and is displayed below in Figure 7.

Two buttons are browse buttons that help specify the source
and destination of the files and the last one to run the math and
create the output file. The text fields specify the source and
destination files. When the “create” button is clicked the meat
of the program runs. First it does checks to make sure the user
put in the correct file data. There is one function that loads and
parses the data from the file. Then there are a few functions
that find the derivatives of the data that was found. To find the
derivative at a point we must find the weighted average of the
two slopes on either side. For example if we have point 1, 2,
and 3 then the slope of 2 will be the weighted average of the
slop from 1 to 2 and from 2 to 3. The equation is derived below.
As it turns out the weighted average of the two slopes around
point 2 is the same as the slope from point 1 to 3.

() (

) () (

)

() ()

A series of math functions that find the results that are
output. Finally there is a function that creates the “.csv” file
from the results found. This condenses the potentially
thousands of data points to just a few averaged values that our
client wants.

Two data structures are used both are Linked List. Linked
List is used for saving on space and overhead. Also the data is
only accessed sequentially and is of unknown size. The first
Linked List holds the initial data that is found from the parsed
data. The second holds the data that is calculated after it is put
through the functions that calculate it.

After thorough design and planning, we decided to
implement a plan to approach and solve our software design.
The life cycle chosen was the waterfall model as shown below
in Figure 8.

 Only one person worked on the software so it was simple to
use this model and the benefits of this model outweighed the
other approaches available.

VI. EXTERNAL COMPONENTS

Although our project is focused around the extrapolation of
data, we need a plane to install of our sensors on. In addition,
L3 request that we use an autopilot to create repeatable flight
patterns for our test. Both of these parts are considered
external components because they are not vital for our sensors
to operate, but an airplane is required for the sensors to record
valid data.

The airplane we decided on for testing is a model replica of
the MQ-9 Reaper, commonly known as the military’s Predator
drone. The Reaper has a wingspan of close to 8 feet and will
be the closest simulation to an actual small fixed-wing aircraft.
The most important factors in deciding on this plane was the
wingspan and its likeness to actual planes that are used in
various military applications.

Seeing as this plane is very large and a scale model of the
actual MQ-9, the plane manufacturers allowed the users ample
room and ability to implement features uncommon to other
remote controlled planes. The most interesting of the extra

Figure 8 - Software Design Waterfall Model

Figure 7 - Application Interface

available features, the plane came with a rotary shell beneath
the cockpit that had space for a rotating camera to be installed.
Unfortunately, our project didn’t supply adequate resources for
us to successfully implement this feature. In addition to the
camera, we had ample space available to route our many
strands of wire through the plane and install the ArduPilot.

Although the model plane had plenty of space available at
the start, we eventually utilized almost the entirety of the free
space in the plane. This was a huge problem at first because all
of the external sensors (force sensors and angle sensors) were
already installed, but our board was unable to fit into the plane.
After a few modifications to the layout of our system and the
plane’s body, we were able to force our finalized PCB into the
top half of the hull of the plane. In a few instances the current
location is ideal since the lengths of some wires are made
slightly shorter and we avoided cutting into the fuselage of the
plane. On the other hand, since our movement is being
recorded at the head of the plane it may not be as accurate had
we recorded the data closer to the plane’s center of gravity.
But it is important to note that the benefits of the approach
taken outweighs the option of making a huge cut into the
plane’s fuselage and risking flight of the plane itself. To go off
of the point of accuracy, we also had to place a good bit of
focus into creating valid accurate test cases. Since we are
trying to obtain data that is highly accurate, repeated test cases
are very vital to being able to validate recorded data – the
autopilot helps us achieve that goal.

We are using the open-source ArduPilot to handle our
autopilot movements. In order to adhere to FCC regulations,
we have set our autopilot to run in two modes – manual and
waypoint loop. Manual mode allows for us to control the plane
via the remote control. Whereas the waypoint mode makes the
autopilot take control of the plane and follows a set of GPS
waypoints to a set destination. Our approach is to set in a small
round track of waypoints and repeat the circuit three times for
the autopilot to follow. Our reasoning to use two different
flight modes on the autopilot is so that in the rare event that the
autopilot goes haywire, we are able to commandeer the plane
back and allow a human to control the plane to safety.

Again these devices do not directly affect our system
functioning properly, but they allow us to test our prototype in
actual flight environments.

VII. CONCLUSION

After reaching out into a different area of aerospace studies,
we feel that are project will be of help to L3 to study and
confirm findings for their future research of small fixed-wing
study. Although there may be other devices similar to ours that
record plane movement, ours is separated from the others
because we are analyzing more aspects of the flight
characteristics. Our experiences with this were challenging
and interesting – we had to study various aerospace terms in
addition to applying our Electrical and Computer Engineering
knowledge. Lastly, we would like to acknowledge the
following individuals for offering their time and knowledge to
build our prototype: L3 Communications for sponsoring,
Merrill Lay for project guidance, Rebekah Reams and Zhihau
Qu for plane tips, and finally, Michael Bosse and Alan
Beauchamp for microcontroller assistance. In addition the
authors of this article would like to thank the professors and
faculty – Avelino Gonzalez, Zhihau Qu, and Chung Yong
Chan – for serving as a part of our review committee.

MEET THE ENGINEERS

Winston James, an Electrical
Engineering major. He designed and
manufactured the PCB board for the
Flight Data Logger. He hopes to do
more PCB designing in the future
especially for digital signal
processing and wireless
communications applications.

Brian Lichtman is a Computer
Engineering major. After graduation,
Brian looks to become a full time
Software Developer for L3
Communications. His responsibility
was to interface the MCU with the
SD card.

Shaun Mosley, a Computer

Engineering major. Shaun led the
interfacing of the sensors and the
microcontroller, in addition to
studying the plane and autopilot. He
is currently pursuing opportunities to
work as a Software Developer for
several companies in Atlanta, Georgia.

John (Tony) Torres, another Computer Engineering major.

He headed the software application
development for this project. His
current plan is to work at Cognizant
Technology Solutions in Tampa Bay,
Florida as a Java developer upon
graduation.

REFERENCES

[1] Davis, Leroy. MultiMedia Card Pinout.
interfacebus.com. [Online] March 3, 2011. [Cited: July 20,
2011.]
http://www.interfacebus.com/Multi_Media_Card_Pinout_MM
C.html.

i
 http://www.sensortechcorp.com/pressure_maps.php#

ii
 http://store.diydrones.com/Kit_MPXV7002DP_p/kt-

mpxv7002dp-01.htm

iii
 http://store.diydrones.com/Kit_MPXV7002DP_p/kt-

mpxv7002dp-01.htm

http://www.sensortechcorp.com/pressure_maps.php
http://store.diydrones.com/Kit_MPXV7002DP_p/kt-mpxv7002dp-01.htm
http://store.diydrones.com/Kit_MPXV7002DP_p/kt-mpxv7002dp-01.htm
http://store.diydrones.com/Kit_MPXV7002DP_p/kt-mpxv7002dp-01.htm
http://store.diydrones.com/Kit_MPXV7002DP_p/kt-mpxv7002dp-01.htm

